
1ER PARCIAL TEMA 2 29/10/2018

Nombre y apellido:....

D.N.I.....

item	1	2	3	4	5
Puntuación	2	2	2	2	2

1. En un cuadrado de lado 2 se unen los puntos medios de sus lados para obtener otro cuadrado inscrito. Se repite el proceso sucesivamente con los cuadrados obtenidos. Calcular la sucesión cuyo término n-ésimo corresponde con la longitud del lado del cuadrado n-ésimo. ¿Qué tipo de sucesión es?

Solución:

Sea a_1, a_2, a_3, \cdots los lados de los sucesivos cuadrados.

Donde $a_1 = 2$,

$$a_2 = \sqrt{1^2 + 1^2} = \sqrt{2} = 2 \cdot \frac{\sqrt{2}}{2}$$

$$a_3 = \sqrt{\left(\frac{\sqrt{2}}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2} = 1 = 2 \cdot \frac{\sqrt{2}}{2} = 2 \cdot \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2}$$

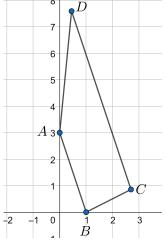
$$a_4 = \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = 1 = 2 \cdot \frac{\sqrt{2}}{2} = 2 \cdot \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2}$$

$$a_n = \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = 2 \cdot \left(\frac{\sqrt{2}}{2}\right)^{n-1}$$

Se trata de una progresión geométrica de razón $\frac{\sqrt{2}}{2}$.

2. Un atleta entrenó 2 horas diarias durante 30 días y adelgazó 5 kilos. Si entrenara solamente 20 días, pero lo hiciera por 3 horas, ¿cuántos kilos perdería?

Solución:


$$\begin{array}{c|c|c|c} Tiempo & Días & Peso \\ \hline 2 & 30 & 5 \\ \hline 3 & 20 & x \\ \hline \end{array}$$

$$\frac{5}{x} = \frac{2 \cdot 30}{3 \cdot 20}$$

$$x = 5$$

Adelgaza 5kg.

3. Probar que el cuadrilátero es un trapecio, sabiendo que CD es un segmento de recta y + 3x - 9 = 0.

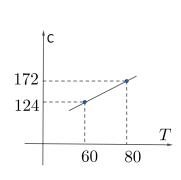
Solución:

Llamamos t: y + 3x - 9 = 0 $\rightarrow y = -3x + 9$ $\rightarrow m_t = -3$

$$\rightarrow y = -3x + 9$$

$$\rightarrow m_t = -3$$

 $m_{\overline{AB}} = \frac{3-0}{0-1} = -3$, $m_{\overline{BC}} = -3$


$$m_{\overline{BC}} = -3$$

Luego $m_t = m_{\overline{AB}}$,

Entonces $\overline{AB}//\overline{CD}$ por lo tanto, ABCD es trapecio.

- 4. Los biólogos han descubierto que el número de chirridos que los grillos de cierta especie emiten por minuto está relacionado con la temperatura. La relación es una función lineal. A $60^{\circ}F$ los grillos chirrían 124 veces por minuto aproximadamente, mientras que a $80^{\circ}F$, lo hacen 172 veces por minuto.
 - a) Obtener la función que relaciona el número de chirridos por minuto con la temperatura en
 - b) Si la temperatura es de 72°F ¿Cuántas veces chirrían por minuto? ¿Y si es de 83°F?
 - c) ¿Cuál es la temperatura si se contaron 132 chirridos?

Solución:

a)
$$\frac{C - C_0}{T - T_0} = \frac{C_1 - C_0}{T_1 - T_0} = \frac{C - 124}{T - 60} = \frac{172 - 124}{80 - 60} = \frac{48}{20} = \frac{12}{5}$$

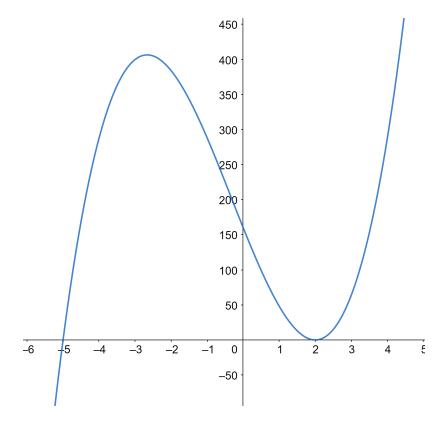
$$C = \frac{12}{5}T - 20$$

b) Si
$$T=83^\circ$$
 \rightarrow $C(83)=\frac{12}{5}\cdot 83-20\approx 179$ Chirridos

$$T = 72^{\circ}$$
 \rightarrow $C(72) = \frac{12}{5} \cdot 72 - 20 \approx 1153$ Chirridos

$$c) \ T = \frac{5}{12} \cdot 132 + \frac{25}{3} \approx \boxed{63^{\circ}F}$$

5. Sea $f(x) = kx^3 + kx^2 - 16kx + 160$, donde k es un número real tal que la f contenga el punto (1,48).


- a) Encuentre el número k.
- b) Encuentre las raíces.
- c) Grafique Aproximadamente.

a)
$$48 = k + k - 16k + 160$$
 $\rightarrow k = 8$

a) $48 = k + k - 16k \cdot +160$ $\rightarrow \boxed{k=8}$ b) el polinomio $8x^3 + 8x^2 - 128x + 160$ es divisible por (x+5)

$$(x+5) \cdot (x^2 - 4x + 4) = 8 \cdot (x+5)(x-2)^2$$
 Luego las raíces son -5 y 2.

c) La raíz 2 tiene grado de multiplicidad eso significa que hay un rebote y en el intervalo $(\infty, -5)$ la función es negativa.

